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UDC 62-50
ON THE APPROXIMATION OF POSITIONAL CONTROL PROBLEMS™

A. I. KOROTKII

Conditions for the approximation of positional control problems for contrallable
systems of sufficiently general form are discussed, covering, in particular, certain
classes of distributed-parameter plants. The constructions are based on the results
in /1—6/. BRnalogous questions for programmed control prcblems were examined, for
instance, in /7-—14/, and for positional control problems, in /1,6/. In contrast
to the approximaticn scheme proposed by Krasovskii for general evolution systems /l/,
the resolving strategies in the present paper do not depend upon the accuracy ¢e.

In contrast to /6/ a more general case is examined inclusing, in particular, approx-
imation by the Galerkin method and by the difference method of straight lines.

1. we assume that a contrallable dynamic system I is defined, on the time interval T =

lty. 9 1. t,<®, and in a metric space X (with metric p) » by an operator Y associating with
each (L LIC T.reEeX, u=P(, L. veQ (i, t,] a unique element Y (4, z, i, u. v) = X. Here

P (t;. t,) (Q (t,, 1,)) is the set of first (second) player's actions, admissible on (). t,} /1/,
with the properties: the actions u{r) on (i, t,] define for every 1= (4, t) the actions
u(ty, 1 @, 1) and u(t. LI ) on (1, 1t} and (t,t}, respectively, and, conversely, the
actions u; (v) on (4, 7] and the actions g, (vy) on (1.1] define the actions u, + u, (v +vy) on
(t,, t,]. Operator Yy possesses the semigroup property

Yt ootptty + U, 0, +0) =Y (1, Y (13, 2, T, 4y, 1), 1, Uy, 1)

A rule U (V) associating with each triple {t,, t,, 7}, to, <t <t;, <%, z&= X . an element
Uty ty, 2) & P (ty, to] (V (8, 82, ) E Q@ {4y, t,]) is called the first (second) player's strategy. 2
function ¢: [t,, #] - X with the properties

G (ty) =24, fOr 1€ @ Tul,i=0,..., m—1, @0 =Y (1, ¢(ry), ¢, u;(ty 1), vy (1, t])

where
up = U ) T @ (1)), 0, € 0Q (15 Tp, W, &P (v Tyl vy =V @ 15, ¢ (1)

is called a motion from position {lw Zs) te& T, z, & X, corresponding to strategy U (V) and

to the partitioning A= {1, j=0,..., m@)/t,=1<...<1, =49} of the interval [z, 6.

The set of all motions corresponding to an initial position {tes 74}, @ strategy U (V), and

a partitioning A is denoted by the symbol D (fy, z, U (V), A). In the space T x X of positions
we introduce the metric o ({t, z}, {t, ¥} = (1t — TP+ p(z, y))*» and, if M is a set from ! X X,
then

ot zh M) = inf ot 2), {r,

Let sets M an@ N from T x X be specified.

Problem 1.1. For given ({t zo}, M, N find a strategy U with the property: for any
e>0 a §>0 can be found such that for every ¢ < D (to, 2o, U, A), dA <6 we can find te T
for which

o ({t, o (1)), M ¢ (1.1)
o({r, (0}, N)Ce, t, <t (1.2)

Problem 1.2. For given ({fo, %), M, N find a strategy V with the property: there exist
€ >0, 8 >0 such that the contact condition (1.1), (1.2) is excluded for every ¢ =D (2, z,,
V, 4), dA 6. Here dA = max {t;, —1;|j=0,. .., m— 1}.

2. Assume that a certain sequence {I,} of controllable dynamic systems exists in the
sense of the above-mentioned definition. System Z; is specified on interval 7 in a metric
space X; (with metric p;) with a semigroup operator Y; mapping each ({;. L1 C T, z, € X, u e
Pty b, v=Q(t, 1] into  X;. We construct an auxiliary sequence {Z£;*} of controllable
dynamic systems. System ZI* is specified on 7 in the metric space X*=X,> ... xX; (with
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a natural metric p;*) with an operator Yi* ={Y,... ¥} associatingwitheach {4, ] 7.
.Ig* = {xp' L xé}v 4 eP (tl’ tzlv veE Q (tv tﬁ} an element
Yi*{ty a*, by, v, 0) = {Y {2 b w0 - - o Yy (0, 2 by, 1, o))

Let a sequence
{ga} zp = X0 i=1,2,. ..

of initial states be prescribed.

Condition 1. For every number i there exists an operator 4;:X;— X with the propert-
ies:
1) pfldizen 2) >0 as i{— oo and

o (A (toy Zoss £ ultor tl, v (o, t, ¥ (L, T Lot (g, 8], v (ty, t))~» 0 @5 iwr oo

uniformly in (E {tg 8, U E P (to, O, v E Q (ty, BI;
2) operater 4; is uniformly continuous on the set

ig;l‘l)t (t)’ Df (t) = {q) (t) {@EDi = {%‘;} ((.:'fﬂgi Ré! Tpis (-I;s A)}

Condition 2. For every number ¢ the set D, of functions is equicontinuous in (< 7.

Condition 3., For every number ; the system 2Z;* is regular, ji.e., 2 function Wu;: [0,
o) -~ 10, o) and a number [, > exist, with the properties:

D pp)—>0 as y—0

2) for any ¢ <t, «* and y* from D*(z) there exists u*< P, &Ll =0, &)
such that for every v @ (;, &) @SSP, t,]) we can find v, =@, &) (u, S P (t, t;]) with
the properties: for every uc P (¢, t) 0= Q (¢, &)

or (V¥ (ty, 2%ty w® (), (%)), Yid (b, yi®, b, w4 (4), Uy O < pi® (&% 329 oy (fy — 1) (6 — 1))

An action u* (v*) is called an extremal action of the first (second) player, correspond-
ing to the collection {#), &, zi*, y*). Without loss of generality we reckon that for every i
the function M: 18 monotonic and that the inequalities

e () < e () Le < gy

are valid. For the sequence {Z;} of initial states there exists, by virtue cf Condition 1,
a positive sequence {u;}, @;— 0 as i-» oo, such that p (d;zy, z,) < a; and for all & (t, 9,
u = P (to, 0], ve o(tm 1‘}]

P (Aiy’i (tm xﬂh t! u (tov “t U(tgp t],v Y (205 ruv t: 23 (tm ”; v (tov ﬂ)) g AL

Without loss of genarality this sequence can be assumed monotonic,

We choose an arbitrary sequence {m;}, 1, >0 and 5, —»0 as {-»oco. For a given i,
from the number 7v,/3 we determine by Condition 2 a number &; for which the corresponding
values of the functions from D;, for values of argument ¢ differing by the amount §, will
differ in metric p; by the amount 1:/3. We choose an arbitrary sequence “{&:}, ¢, >0, ¢, >
e 2. 8—>0 as j—roo0, 2g; < min {§;, n/3}). Let Z; be the set of all pairs (u, v) & P (¢,

31 Q (ty, 8], such that the function %:7 — X defined by the relations Y {to) = Az,
Yit) = A,¥; (o Zoin b, 4 (ke 2], ¥ (ty, t]), 8, << £ L@ has the properties: there exists ; =T such
that

G ({te ¥ () M) << oy + &y c{{tr, b ()} M) <Ca; + 8, b LT s

We define the sets
Mi = {{tyy 2}z =Y, (foy ZTor, ta Ulty tal, v (% ta]) for 1, >t, and z; =z, for e =iy}
Ni={{t, s} |t Kt Kty Ti = Y {los Tois £, 0 (b th v (b £]) For ¢t >4, and ;= Ty for ¢ = to}

M*) =M O X ... XM, N*O =N < -.. XN, (u, ) EZ,

Condition 4. For every number ! and for ¢e 7 an operator 4*(f): X - X;* exists
with the properties:
1) a number B; >0 exists such that p(Z, ¥ > B p* (A* () z, 4* () y) FTorall te=T, =z
and ¥ from X;
2} A{' (f@} Ty = .’.,"o(* and
4 Y (to, Zyy £, u Ly, i], vty t]) = Y.* (tor Zos*, £, 2 {to; tl, v {tor th

for all t & (fo, 1’], ue P (tm 'ﬁ], v Q (tm ﬁ" ’
NAFOM S M@ A ON SN @)t T, .
Analeas of Problem 1.1 and 1.2 with sets M.* and N* can be examined for system Z*;
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they will be referred to as Problems 1l.l; and 1.25.

Theorem 2.1. Let {t, %o}, M, N, {ts, 0.}, i = 1,2,. ... be specified. Then:

1) from Conditions 1—3 follows: Problem 1.1 is solvable if and only if Problem l.1; is
solvable for every sufficiently large i ;

2) from Conditions 1—4 follows: either Problem 1.1 or Problem 1.2 is solvable for sys-
tem 2

3) from the Conditions 1~ 3 and statement 2) follows: Problem 1.2 is solvable if and
only if Problem 1.2; is solvable for at least one number I.

The theorem's proof relies on the construction of a sequence of singular Liapunov func-
tionals A t XD X X*— 1[0, ), §i=1,2,.. /2—5/. Before we indicate the strategies
resolving the problems we introduce certain additional definitions. By F (¢, z, t,, y), where
t <t <t <H z, y = X, we denote the set of all pairs (4 V) EP(t, ,] X Q(t, t,] such that
Y (ty, 2, t3, u, v) =y We define the functional A :d; (fo, Zor Z*) = p* (2o*, z*)? and, for te&
(to, 'ﬁ) . A'i (tv z, xi‘) = inf pi‘ (Yi‘v (to, I(ﬁ‘, tr u, U), 15. 2

F(to, Xo, t, %)
From Condition 3 follows: for any t <if,, 2= D (), y* ED* (&)

hi (0, Yty 2, ty w® () 0 @), Yi* (4%t w (), vg ) ki (8, 2, §%) el oy (G — 1) (ty — 1)
where the actions u*, v*, u, v, are determined from Condition 3 with z* = ¥.* (1, z*, ¢, u,
U), (u7 V) E F (101 Io, tly ‘Z)

A strategy U defined as follows issaidto be extremal to the set sequence {W,},W, = T x X;*,
Let
% (£, z)== inf {-‘i-my Mg, >+ —0)hlt 2 Wi (t))-eLi'("'”}, M, x, Wi(t) = o bt 7, 2)

For a triple {l» & z}, 4, <t,, 2 & D (), such that the function x{f;, ) is defined, we assume:
1) ig =14 (¢, ts, z) is some number such that

i . 1,
*(t, < <ulty 9+ —t), >0+ —n) kit z, Wa(t)-e P
2) z=12(t, 1, 7) is an element of W, (t,) such that

My oz, ) Qi (ty, oz, Wi, (4) 4+ i (ty — 8)-(ta — 1)

3) Uty t, %) is the first player's extremal action corresponding to the collection
{th iy, Yi.'l (tov Ioa.', t, u, v), z}, (u, veF (zm o 1y, z)'
‘For a triple {4, i,, xz}, t, << t,, such that z & D (t,), because the function % (f,, z) is not defin-
ed, we assume: U (i, 4, z) 1is an arbitrary element of P (f, t,]. The second player's extremal
strategy is defined analogously.

From Conditions 2 and 3 for system Z;* there follows an alternative in the game consist-
ing of Problems 1.1; and 1.2;. Problem l.l; is solvable if and only if

2 € ) Z: (1)
£>0

where Z¢ is the set of positional ¢ —absorptions of set M®* inside N;* /2—5/. The set
Z¢ (if it is not empty) is a u-stable bridge of system I /2—5/, contained in N (the
closed t-neighborhood of N* and staying in M*t (the closed ¢ -neighborhood of M®*) . The
proof of these assertions is based on the ideas in /1—5/.
The assertion in the first part of Theorem 2.1 follows from

Lemma 2.1. Let {to, z4}, M, N, {to Zoi} (i = 1,2,...) be specified and Conditions 1= 3 be ful-
filled. Let W;={{t, z*}|.t =T, z* € 2. ND* (t)} and z* = W, (t,) for all sufficiently
large . Then the startegy [’ extremal to sequence {W,} solves Problem 1.1. If Problem 1. 23
is sclvable for even one number /, then Problem 1.1 cannot be sclved.

The assertion in the second part of Theorem 2.1 follows from the assertion in the first
part, Condition 4, and the fact that if strategy V;* sclves Problem 1. 2; for some i, then
strategy V ({, &, 2) = V* (¢, 1, A* () z) solves Problem 1.2. The assertlon in the third part
of Theorem 2.1 follows from the preced:mg two.

3. We indicate a special case when we can manage without such a technical device as
the construction of the auxiliary systems IX*. It is the following: systems X; have the
structure of systems ZIZ*, i.e., a sequence {Z,} of controllable dynamic systems exists

such that each system I, is constructed from Zgs - Zg similarly to how I;* Was construct-
ed from 2X,,..., I, The thing is that in this case it is sufficiently simple to construct
a suitable operator B,:X,,—X; i=1,2,... with the properties

pi (Biziy,. B ¥ird) < Piny Fia Yis1)) BY i (80, ZToran, 8, 1, v) =Y, (t, Zois ¢, u, v)
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Example 3.1. Let system I be described by the equations of oscillations of a homo-
geneous string with distributed controlling loads

=g FO@ @+ c®o®, (O =z2(th=0 t=T, 0t z{t8) =2E 2.8 =z® (3.1)

Let bcneLy(0, D, 2 e W, (0, (see /15/, for example, for the definitions of the spaces).
Then, following /4,16/, we can take
X=wo© 0 xL© 1

An admissible action « (W of the first (second) piayer on (i, is the Lebesgue measurable

wiltp bl = l=p @l @l ol = (= v, 9D, Ytz 080 = {2 (it 28,00, 2 (Geity, 2, 0, )
Here
=268 .0 <<t 0CECL, =28 .0 41 t< 0<CE<L!

are a generalized solution of problem (3.1) /16/ (where, naturally, we must set z(4,-)= zV,
() =2, 2= (%, z%), 1, <<y and its generalized derivative with respect to ¢ As was
shown in /16/
z2& C ([, t5]; W™ (0, 1), 2t & C (lty, 23); Ly (0. 1))
Let {gi, ©4} be a solution of the spectal problem
o = — qo, e =e{@=20

Obviously, ¢ = %%/, o () = V2 sin (nit/l), ;= 1,2,.... Then we can set

V. .— Bi PE V. s o s s Tme fo v 4 mi w aN % fae s Ly

aj = v X oans, I Uy T4y 8, 8, 7} W Alyy Uy Tiy Uy Tjy 8 \ps iy T, u, D)}

where 1z (- ..) 1s a solution almost everywhere of the system of ordinary differential equat-

ions Y = —qy b eput e, 0p o, =, ..., 0
Y () = aY, yi’ () = ¥, 5 = {50, 5@
5V = (@, Lm0 = (g o

Hexe <(.,-» is the scalar product in L, (0,). The example given corresponds to the special
case being examined. In order to satisfy the corresponding analogs of Conditions 1—4, we

should take
) i :
@ @y i) Y@ _ . i ;
2 =3P, P, H=ePap, =aPley =10 Ai’i":{lz o, 3 I?JQ)]}

J=l =i
B =1, 4;* () z = (P, 5@y, = a0, H¥ = D), wj>

The quantities u;, L;, u*, v*, us, v, are defined as in /2/ and as the sets M; and N; we can assume
Mi={{tz}l|tel =40z {tate M, Ni={tallteTl, =420z (e N}

The problem can be analyzed analogously for a more general form of hyperbolic system /4/. A
parabolic system was analyzed in /6/.

4. In conclusion, by example of an & -encounter problem /l1/ we show one of the methods
of constructing the & -strategy

Uc(tl,' t:.’v I), to <tl<t2<0rzEXv 8>O

solving this problem.

An e -encounter problem. Let ({t, z,}, M, N be specified

. e
-
e -gtrategy U® with the property: & >0 can be found such that for any ¢ &

d:s<6 we can find (¢« T for which (1.1) and (1.2) arxe valid.
Condition 5. For some sets M;,, N, i=1,2,..., let
o ({8 b (O}, M (N)) = o ({t, b (&)}, M (V)
as i(-»o0 uniformly in t& T, ucs P (t, ?, ve Q (¢, O

Pi (ta) = Zosr Vi (8) = Y, (toy Zois t, u{te, th v (te, t])
1!7 (t"}) = Iy, ‘? (t) =Y (Zﬁv Ty Lt u (ZG? t!? 4 (tﬁi l]); —te< t ‘gﬁ
Condition 6. For all sufficiently large / a strategy U: exists (possibly including
among the arguments an auxiliary variable formable in a chain of controls, for example, a
guide variable) which ensures the solution of Problem 1.1; (for system 3, with sets M, W,
and initial position {fs Zy;}), stable with respect to noise in the measurement of state z;.
Let &, = E; (e) >0 be the magnitude of admissible noise, corresponding to e >0 /2/.
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Condition 7. Let Condition 6 be fulfilled, For any & >0, for all sufficiently large
i an operator C,:X - X; exists such that
pi (Ciy (1), ¥: (1) < &i (e)
at once for all te T, uE P (I, ¢, v € Q (¢, 9.
Theorem 4.1. Let {lo Zoh, M, N, {tg, Zos}, M, N;yi = 1,2,. .. be specified and let Conditions
5~ 7 be fulfilled. Then for any &€ >0 we can find a number i, = i, (¢) such that for every
i > i, the & -strategy
Ut (ty, tyy 2) = U, (t1y g, Ci7)
solves the € -encounter problem.
Example 4.1. Let system 5 be described by the heat conduction equation for a thin
homogeneous rod with distributed controlling forces
= 4.
N b@ U0+ @, 10, 0=:@D=0tel 0<t<l, b =2® (4.1)

Let b ¢, 20 W™ (0,1). Then following /4.15/, we can assume X = W, (0,!) with a metric of space
L,(0,1; an admissible action u(?) of the first (second) player on (t,, {,] is the Lebesgue
measurable function

iyt = =, 0l (o (o] = (= v, v, Y (2 tpou, ) = 2 (lgre) 4y, 7, 4, D)
where z=1:z(t§ ...), 1, < 1< 8, V<E< ! is the generalized solution of problem (4.1) /15,16/(where,
naturally, we should set :z(4,))= 2, 4 < t<t). BAs was shown in /15,16/, :z& C(ly, u}; W0 (0, 1),
On {0,!] we prescribe the difference grid
Bo=Fkh, k=0, ...,i-t1, h(i+1) =1

then we can set: X,=Aa! with metric

LA L\
Pilen )= (b 3 b — 1)
jumi
Yi(t, %is 02 8, 2) = 23 {143 4y, 7, u,v), where =z (+..) is a solution almost everywhere of the system of
ordinary differential equations of the method of lines

7!’ = ((zij)g)g ToEutc@e, =1, . iy 25() =2z z={z) ... gl (4.2)
Let M and N be bounded sets from 7 X W,% (0,1). In order to satisfy Condition 5 we set

Mi={t,z)lteT, z=Caz, t,z}e M, Ni={tz)|t€T, 5 =Ciz, {.a}e N}, Cz={zE) ....zE&)}) (4.3)

Cbviously, Condition & satisfies the procedure of control with a guide if i & Wil): where Wi
is the set of positional absorptions of system (4.2) /2/. Finally, we note that for a given
e >0 the quantity & () >0 can be taken as only one for all i; therefore, taking into account
the convergence of the solution of problem (4.2) to the solution of problem (4.1), we can take
operator (4.3) as the operator C;.

For simplicity let phase constraints be absent and let M= M(#). Then, allowing for
the estimate of convergence rate in Condition 5 (of the order of ¥-') and the estimate of
the mismatch between the motion and the guide in Condition 6, in Theorem 4.1 as applied to the

given case we can take )
iy /e, 08 < yei?

where Y.W-Y: are positive constants explicitly determinable from 20, b, ¢, p, v and M.

In the example given it is not @ifficult to verify Conditions 1—~3 wherein as the operat-
or A; we can take the polynomial interpolation operator, while Condition 3 is satisfied as in
/2/. For system (4.1) in the game consisting of Problems 1.1 and 1.2 an alternative is valid.
The constructions carried out in this example can be extended to certain classes of hyper-
bolic systems.

The author thanks Iu. S. Osipov for posing the problem and attention to the work and
acknowledges A, V. Kriazhimskii for useful talks.
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